SYNTHESIS OF SOME NEW UNSYMMETRICAL 1,4-DIHYDROPYRIDINE DERIVATIVES AS POTENT ANTITUBERCULAR AGENTS

Harsukh Gaveriya, Bhavik Desai, Vipul Vora and Anamik Shah Department of Chemistry, Saurashtra University, Rajkot-360005, Gujarat (India)

ABSTRACT

2,6-dimethyl-3-acetyl-5-carbmethoxy-4-(3'-nitrophenyl)-1,4-dihydropyridine <u>1</u> was condensed with aromatic and heterocyclic aldehydes to form chalcone analogs <u>2a-h</u> and then cyclised to substituted pyrazolines leading to novel 1,4-dihydropyridine <u>3a-h</u>. <u>4a-h</u> and <u>5a-h</u> which are directly attached to heterocyclic moiety and devoid of the ester function at C₃ (of DHP). All compounds were screened for their antitubercular activity against *Mycobacterium tuberculosis* (H₃,Rv).

INTRODUCTION

The dihydropyridines are the well-known drug moiety for the treatment of antihypertensive and cardiovascular disorders¹. However, it is also associated with antiallergic², antiinflammatory³, treatment of circulating diseases⁴, calcium channel antagonism⁵⁻⁹ etc. About 50 different dihydropyridines are launched as new drugs in last 20 years. The 3-nitrophenyl substituent at C₄ of DHP provides excellent stability and pharmacodynamic properties leading to many drugs like Nicardipine⁷, Pranidine⁹, Nimodipine⁹, Tiamdipine¹⁰ and Manidipine¹¹. These drugs mainly exhibits calcium channel antagonist activity. The DHPs are still the subject of intensive study, due to recent development on *mdr* reversal in tumor cells which has given a new dimension of application of dihydropyridines¹²⁻¹³.

Our aim was to prepare some interesting new unsymmetrical dihydropyridine derivatives from 2,6dimethyl-3-acetyl-5-carbmethoxy-4- (3'-nitrophenyl)-1,4-dihydropyridine <u>1</u>. Due to active group at 3rd position of DHP ring, the aldehydes were condensed with acetyl group in presence of base catalyst in ethanol to form chalcone analogs <u>2a-h</u>. They were refluxed with hydrazine or phenylhydrazine with acetic acid to afford substituted pyrazolines <u>3a-h</u>, <u>4a-h</u>, <u>5a-h</u> linked directly with dihydropyridine nucleus.

Elemental and spectral analysis supported the constitution of the product. The product was screened for their antitubercular activity. The compounds were tested against *M. Tuberculosis* H₃₇Rv. The standard drug used was Rifampicin. Primary screening was conducted at 12.5 μg/ml against *Mycobacterium Tuberculosis* (H₃₇Rv) strain in BACTEC 12B medium using the BACTEC 460-radiometric system¹⁴.

RESULTS AND DISCUSSION

It can be seen from Table-1 that substitution at 4-phenyl ring considerably affects the antitubercular activity and other analogs having 4-N, N-dimethylaminophenyl and 4-methoxyphenyl moieties showed 66% and 45% inhibition respectively. The percentage of inhibition indicated that

chalcone **2e** containing 3-nitophenyl substitution showed significant activity (85%). The other substitutions did not show good activity. The 1H pyrazoline linked dihydropyridines were found to be almost inactive. The acetyl pyrazoline exhibited very good activity. The unsubstituted 4-phenyl ring of acetylpyrazoline **4f** showed 87% inhibition. The 1'-phenyl derivatives also exhibited significant activity. So far as structure activity relationship is concerned, 3-nitrophenyl group is able to exhibit significant activity.

EXPERIMENTAL

The melting points were determined in open capillary tubes and were uncorrected. IR spectra were recorded in NICOLET-MAGNA-IR 550 SERIES II and 'H NMR recorded on Bruker AC-300 MHz FT NMR using TMS as an internal standard, chemical shift in δ ppm.

The compound 2,6-Dimethyl-3-acetyl-5-carb methoxy-4- (3"-nitrophenyl)-1,4-dihydropyridine $\underline{1}$ was prepared according to the method described in literature¹⁵⁻¹⁷.

Preparation of 2,6-Dimethyl-5-carbmethoxy-4-(3'-nitrophenyl)-3-[3"-(4"-methoxyphenyl)propane-1one]-1,4-dihydropyridine 2a.

To a well-stirred solution of 2,6-dimethyl-3-acetyl-5-carbmethoxy-4-(3'-nitrophenyl)-1,4dihydropyridine (3.3 g, 0.01 M) and p-anisaldehyde (1.36 g, 0.01 M) in absolute ethanol, 40% NaOH solution was added till pH reaches to 8.0. Then reaction mixture was stirred for 24 hrs at 25-30°C. The reaction mixture was poured into crushed ice containing little amount of HCI. 10% Sodium bicarbonate solution was added and sticky mass was left overnight for isolation. The product was filtered, dried and recrystallised from ethanol, m.p. 160°C; yield 60%. Calculated for $C_{zs}H_{z4}N_2O_{e}$, C, 66.96; H. 5.36; N. 6.25; Found C, 67.00; H, 5.30; N, 6.29, 'H NMR (300 MHz,CDCl₃+DMSO-d_e) δ : 3.80 (S, 3H); CH3, 6.10-6.40 (dd, 2H, COCH=CH); 2.35 (S, 6H 2xCH₃); 3.59 (S, 3H, OCH₃); 5.23 (S, 1H, C₄H). IR (KBr) cm¹: 1703 (C=O ester); 1685 (C=O chalcone); 1535, 1330 cm⁻¹ (C-NO₂).

Similarly other chalcones <u>2b-h</u> were prepared. The physical and analytical data were recorded in Table-2

Preparation of 2,6-Dimethyl-4-(3'-nitrophenyl)-5-carbmethoxy-3-[3"-(4"'-methoxyphenyl)-2Hpyrazoline-5'-yl]-1,4-dihydropyridine 3a.

A mixture of **2a** (4.48g, 0.01M) in ethanol, hydrazine hydrate (0.5g, 0.01M) and piperidine (1ml) was refluxed for 8-10 hrs in absolute ethanol. The isolated product was filtered, dried and recrystallised from ethanol to give **3a**, m.p. 144°C, yield 62%. Calculated for $C_{as}H_{as}N_{a}O_{s}$: C, 64.93; H, 5.62; N, 12.12; Found C, 64.85; H, 5.73; N, 12.01; 'H NMR (300 MHz CDCl₃+DMSO-d₆) δ : 2.36 (s, 6H, 2xCH₃); 3.56 (s, 3H, OCH₃); 3.64(s, 3H, COOCH₃); 5.10 (s, 1H, C₄H); 2.7-2.8 (t, 1H, CH-CH₂). IR (KBr) cm ¹: 3135 (NH); 1530, 1324 (C-NO₅).

Similarly other compounds <u>3b-h</u> were prepared. The physical and analytical data were recorded in Table-2.

Preparation of 2,6-Dimethyl-4-(3'-nitrophenyl)-5-carbmethoxy-3-[3'-(4"-methoxyphenyl)-2'- acetylpyrazoline -5'-yl]-1,4-dihydropyridine 4a.

A mixture of <u>2a</u> (4.48g, 0.01 M) in acetic acid (10ml) and hydrazine hydrate (0.5g, 0.01M) was refluxed on constant temperature bath for 8hrs and kept overnight. The product was isolated dried and recrystallised in ethanol to give <u>4a</u>, m.p. 130°C, yield 58%. Calculated for $C_{\eta}H_{as}N_{4}O_{6}$: C, 64.28; H, 5.52; N,

11.11; found: C, 64.32; H, 5.60; N, 11.00. 'H NMR (300 MHz CDCl₃+DMSOd₆) δ : 2.28 (s, 6H, 2xCH₃); 3.62 (s, 3H, OCH₃); 3.76 (s, 3H, COOCH₃); 5.07 (s, 1H >CH); 2.1-2.2 (t, 1H, -CH-CH₂); 3.76-3.81 (d, 2H, CH-CH₃); 1.93 (s, 3H, N-COCH₃). IR (KBr) cm': 1701 (C=O-OCH₃); 1635 (N-C=OCH₃); 3227 (NH); 1635 (C=N); 1529,1347(C-NO₂).

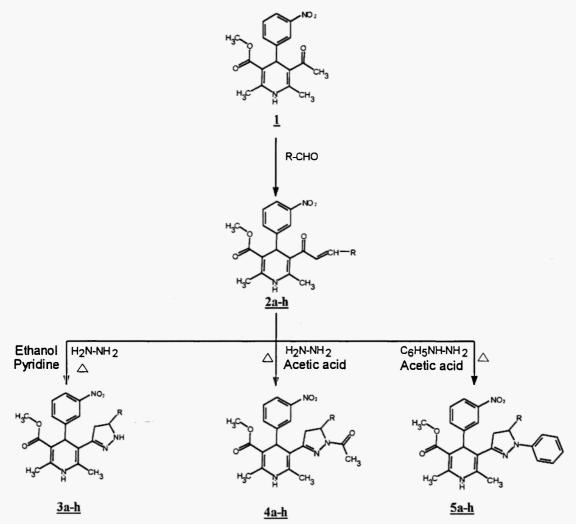
Similarly other compounds <u>4b-h</u> were prepared. The physical and analytical data were recorded in Table-2.

Preparation of 2,6-Dimethyl-4-(3'-nitrophenyl)-5-carbmethoxy-3-[3'(4"-methoxyphenyl)-2'-phenylpyrazoline-5'-yl]-1,4-dihydropyridine <u>5a</u>.

A mixture of 2a (4.48gm, 0.01M) in 20ml of acetic acid and phenyl hydrazine (1.08g, 0.01M) was refluxed for 10-12 hrs on oil bath at 110-15°C. The resulting mixture was concentrated, cooled and poured into ice-cold water containing little HCl. The yellowish colored product was then filtered dried and recrystallized from aqueous ethanol to give 5a, m.p. 115°C, yield 56%. Calculated for $C_{31}H_{31}N_4O_5$: C, 69.14; H, 5.57; N, 10.41; found C, 69.02; H, 5.63; N, 10.48. 'H NMR (300 MHz CDCl₃+ DMSO-d₆) δ 2.33 (s, 6H, 2xCH₃); 3.66 (s, 3H, OCH₃); 3.77 (s, 3H, COOCH₃); 2.55-2.66 (t, 1H, CH-CH₂); 3.75-3.80 (d, 2H, -CH-CH₃); 5.20(s, 1H, C₄H). IR (KBr) cm⁻¹ : 1720 (C=O-OCH₃); 1599 (C=N); 1599,1347 (C-NO₂).

Similarly other compounds <u>5b-h</u> were prepared. The physical and analytical data were recorded in Table-2

MIC (µg/ml)	% Inhibition
>12.5	87
>12.5	85
>12.5	68
>12.5	66
>12.5	63
>12.5	57
>12.5	54
>12.5	52
>12.5	50
	>12.5 >12.5 >12.5 >12.5 >12.5 >12.5 >12.5 >12.5 >12.5 >12.5 >12.5


Table-1:Antitubercular screening result of compounds showing good activity
against *M. Tuberculosis* (H_{ar}Rv strain)

*Rifampicin was used as a standard (MIC = 0.25 µg/ml)

Compd.	R	Molecular	M.P.	Yield	% of N	litrogen
		Formula	(°C)	(%)	Calcd.	Found
2a	4-OCH ₃ -C ₈ H ₄	$C_{25}H_{24}N_2O_6$	160	52	6.25	6.29
2b	2-OCH3-C8H4	$C_{25}H_{24}N_{2}O_{6}$	145	51	6.25	6.29
2c	2-NO₂-C₀H₄	C24H21N3O7	167	53	9.07	8.92
2d	3,4-(Cl) ₂ -C ₆ H ₃	$C_{24}H_{20}N_2O_5Cl_2$	130	46	5.75	5.65
2e	3-N©₂-C₅H₄	C ₂₄ H ₂₁ N ₃ O ₇	165	60	9.07	9.00
2f	C₅H₅	$C_{24}H_{22}N_2O_5$	130	49	6.70	6.38
2g	C₄H₃O(furyl)	$C_{22}H_{20}N_2O_6$	194	58	6.86	6.48
2h	4-N,N-(CH ₃) ₂ -C ₈ H ₄	C ₂₆ H ₂₇ N ₃ O ₅	168	57	9.11	9.42
3a	4-OCH3-C6H	$C_{\mathtt{25}}H_{\mathtt{26}}N_{\mathtt{4}}O_{\mathtt{5}}$	144	55	12.12	12.01
3b	2-OCH3-C9H4	C₂₅H₂₅N₄O₅	148	64	12.12	12.03
Зc	2-NO₂-C₅H₄	C ₂₄ H ₂₃ N ₅ O ₆	195	48	14.67	14.78
3d	3,4-(CI) ₂ -C ₆ H ₃	$C_{\mathtt{24}}H_{\mathtt{22}}N_4O_4Cl_{\mathtt{2}}$	162	58	11.17	11.32
Зe	3-NO₂-C₀H₄	C ₂₄ H ₂₃ N ₅ O ₆	135	52	14.67	14.80
Зf	C₅H₅	$C_{_{24}}H_{_{24}}N_{_{4}}O_{_{4}}$	140	35	12.96	13.06
Зg	C₄H₃O(furyl)	$C_{22}H_{22}N_4O_5$	138	37	13.27	13.42
3h	4-N,N-(CH ₃) ₂ -C ₆ H ₄	C26H29N5O4	172	48	14.73	14.30
4a	4-OCH ₃ -C ₆ H ₄	C ₂₇ H ₂₈ N₄O ₆	130	58	11.11	11.00
4b	2-OCH ₃ -C ₈ H ₄	C27H28N4O8	148	55	11.11	11.05
4c	2-NO₂-C₅H₄	C28H25N5O7	182	60	13.51	13.54
4d	3,4-(CI) ₂ -C ₆ H ₃	$C_{26}H_{24}N_4O_5Cl_2$	120	35	10.31	10.25
4e	3-NO₂-C₅H₅	C ₂₈ H ₂₈ N ₅ O ₇	140	40	13.48	13.40
4f	C₅H₅	$C_{26}H_{26}N_4O_5$	125	56	11.81	11.70
4g	C₄H₃O (furyl)	$C_{24}H_{24}N_4O_6$	165	62	12.06	12.26
4h	4-N,N-(CH ₃) ₂ -C ₆ H ₄	$C_{28}H_{31}N_{5}O_{5}$	155	51	13.54	13.50
5 a	4-OCH3-C9H4	$C_{31}H_{30}N_4O_5$	115	56	10.41	10.48
5b	2-OCH ₃ -C ₆ H ₄	C ₃₁ H ₃₀ N₄O₅	110	42	10.41	10.49
5c	2-NO ₂ -C ₆ H ₄	C₃₀H₂ァN₅O₅	125	53	12.65	12.80
5d	3,4-(Cl) ₂ -C ₆ H ₃	$C_{\mathfrak{s0}}H_{\mathfrak{s}}N_4O_4CI_2$	118	52	9.70	9.75
5e	3-NO ₂ -C ₆ H ₄	C30H27N5O6	125	40	12.65	12.80
5f	C _s H _s	C₃₀H₂₃N₄O₄	120	61	11.02	11.08
5g	C₄H₃O(fu r yl)	$C_{28}H_{28}N_4O_5$	104	38	11.24	11.15
5h	4-N,N-(CH ₃) ₂ -C ₆ H ₄	C ₃₂ H ₃₃ N ₅ O ₄	110	43	12.70	12.74

 Table-2:
 Physical and Analytical data of 2,6-Dimethyl-4-(3'-nitrophenyl)-5-carbmethoxy3-substituted 1,4-dihydropyridines.

REACTION SCHEME

ACKNOWLEDGEMENT

Thanks are due to Saurashtra University for providing junior research fellowship (HG). Authors are thankful to the regional sophisticated Instrumentation center (RSIC) Chandigarh for 'H NMR and Mass Spectral analysis. Authors are also thankful to Tuberculosis Antimicrobial Acquisition and Coordinating Facility (TAACF), funded by the National Institute of Allergy and Infectious Diseases, a division of the National Institute of Health, USA for providing biological screening.

REFERENCES

- (1) R. Mannhold, Drugs Today, **30**, 103, 1994.
- (2) K. Cooper and F. Michael Johnathan, Eur. Pat. Appl. Ep. 294 074, Chem. Abstr. 110, 231441 (1989).00000000
- (3) R. C. Johnson, D. J. Taylor, V. Hann Kenneth and Cheng, Soan, U.S. Pat. 4, 758, 669, Chem. Abstr., **109**, 149366 (1988).
- (4) M. H. Kurono, U. Toshinao, T. Suzuki, Kagaku Kenkyysho Co. Ltd., Eur. Pat. 220, 917, Chem. Abstr., 107, 39637 (1987).
- (5) A. Hantzsch, Liebigs. Ann. Chem. 1, 215, 1882.
- (6) T. Godfraind, R. Miller, M, Wimbo. Pharmaco. Rev. 38, 321, 1986.
- (7) T. Takenaka, S. Usuda, T, Nomura, Arzneim-Forsch. 26, 2176-78, 1976.
- (8) N. Nakayama, K. Ikezono, T, Mori, S. Yamashita. J. Cardiovasc. Pharmacol. 15, 836-844, 1990.
- (9) S. Kazda, V. Neaser, K. Schlojbmann, Arch. Pharmacol. Suppl. 29s, R16, 1976.
- (10) A. C. Gandolfi, M. Figerio, S. Spinelli, O. Tofanetti, S. Tognella. PTC/EP 86/00445, 1987.
- (11) K. Meguro et al. Chem. Pharm. Bull. 33, 3787, 1985.
- (12) K. Ohsumi, K. Oshishi, Y. Moringa and T. Tsuruo, Chem. Pharm. Bull., 43(5), 818-828 (1995).
- (13) A. Shah, H. Gaveriya, N. Motohashi, M. Kawase, S. Saito, H. Sakagami, K. Satoh, Y. Tada, A. Solymosi, K. Walfard and J. Molnar, Anticancer Research., **20**, 373-8 (2000).
- (14) L. Collins, S. G. Franzblau, Microplate alamar blue assay versus BACTEC-460 system for high throughput screening of compounds against Mycobacterium Tuberculosis and Mycobacterium avium. Antimicrob Agents Chemother 41, 1004-1009, 1997.
- (15) J. A. Berson, and E. Brown, J. Am. Chem. Soc., **77**, 444-7 (1955), Chem. Abstr., **50**, 983 (1956).
- (16) A. P. Phillips, J. Am. Chem. Soc., **73**, 3522-3 (1951), Chem. Abstr., 46, 2542 (1952).
- (17) A. Courts and V. Petrow, J. Chem. Soc. 1-5 (1951), Chem. Abstr., 45, 9016 (1952).

Received on July 20, 2000